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Figure 1: Uniform attachment model.

Figure 2: Preferential attachment model.
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1 Introduction

1.1 Overview and Motivation

Random trees are a fundamental object of study in probability theory, combinatorics, and various
applied fields such as computer science or biology. A random tree is a tree—a connected acyclic
graph—whose structure is determined by some random procedure. These trees can serve as models
for a wide range of natural and artificial phenomena: the spread of information, the growth of
networks, or the evolutionary history of species.

One of the simplest models of a random tree is the uniform random recursive tree (URRT),
where nodes are added one at a time, with each new node connecting to an existing node chosen
uniformly at random. Other models commonly studied include the Galton-Watson process (see for
instance the work of Neveu [9], Abraham and Delmas [1]) and preferential attachment model (PA),
whereby new nodes connect with a higher probability to high-degree nodes, effectively mirroring
the ”rich-get-richer” phenomenon (see Barabási and Albert [3]). These various models help provide
insight into the typical properties and substructures of large networks.

Random trees can also be studied through the combinatorial angle. The field of analytic combi-
natorics (see Flajolet and Sedgewick [7] or Drmota [6]) offers powerful tools to study the behavior
of these trees. While these aspects are fascinating, they lie slightly outside the primary focus of
this work. As such, only a few basic properties are reminded here, serving the proof of a short
lemma.

Recent work has also focused on scaling limits of discrete random trees (see for instance the
continuum random tree introduced by Aldous [2]), albeit this is not a topic of focus here.

Estimating the history of a random tree finds various applications in biology or network theory.
The motivation is the following: given only the final structure of the tree, how can we reconstruct
the process by which the tree was formed? This cannot be done in a deterministic way (indeed,
vertices 1 and 2 are indistinguishable in a tree of size 2) and requires probability tools.

This work builds on the recent paper from Briend et al. [4], who explored the estimation of
a tree’s history by analyzing upper and lower bounds associated with a given risk measure and
ordering procedure.

1.2 Notations

The URRT model describes a growth process where each new node is added by attaching it to
any existing node in the tree, chosen uniformly at random. Specifically, starting with a single root
node, each subsequent node i (where i ≥ 2) connects to a node chosen uniformly at random.

The PA model describes a growth process where each new node ”prefers” to attach to existing
nodes with higher degrees. Specifically, the probability that a new node connects to an existing
node i is proportional to the degree di of node i. The degree of a vertex is its number of neighbours
(or connections).

The Affine Attachment (AA) model generalizes the URRT and PA model by introducing a
linear term: the probability that a new node attaches to an existing node i is proportional to di+a,
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where a ≥ 0. When a = 0, one obtains the PA model. When a→ ∞, one obtains the URRT model.

Vertices of a tree may be assigned two distinct labels: an arbitrary label, which has no inherent
intuitive significance, and a second label that denotes its rank or time of arrival. The arbitrary label
serves to identify vertices within a tree where the historical sequence is unknown. The problem of
reconstructing the tree’s history then amounts to find the unique permutation σ that assigns to
each vertex’s arbitrary label its time of arrival.

An ordering estimator σ̂ is a permutation that estimates a time of arrival for each vertex, based
on observed data. σ̂(i) hence denotes the rank of a vertex. The goal of an ordering estimator is to
approximate the original order in which nodes were added to the tree.

A label-invariant estimator is an estimator which only depends on the structure of the tree,
and is independent of the arbitrary labelling. Formally, it verifies, for any tree T and (unknown)
permutation σ,

σ̂(T, σ)
d
= σ̂(T σ′

, σ ◦ (σ′)−1),

for a given permutation σ′. T σ′
denotes the tree with label i replaced by σ′(i).

Given a vertex j in [n] := [1, n], a real parameter α > 0, and an estimator σ̂, we define

Rα,j(σ̂) := E
[
|σ̂(j)− σ(j)|

σ(j)α

]
.

We will mostly look at the case α = 1 in the following pages, i.e., the estimation error of a
vertex’s rank is normalized by said rank. Intuitively, this reflects the fact that arrival times of
leaves are harder to estimate.

We use the notation f(n) ≲ g(n) to indicate that there exists a constant C such that f(n) ≤
C · g(n) for sufficiently large n, and similarly f(n) ≳ g(n) to denote that there exists a constant C
such that f(n) ≥ C · g(n) for sufficiently large n.

1.3 Ordering Procedures

We define here the two main ordering procedures in use in this paper. Definitions are in line with
those of Briend et al. [4]. The first ordering we will look into is based on the Jordan centrality. It
measures the centrality of a vertex u in a tree T based on the size of its subtrees. For a vertex u,
the Jordan centrality is defined as:

ψT (u) = max
v∈T,v∼u

|(T, u)v|

where (T, u)v represents the size of the subtree rooted at v after removing u, and v ∼ u indicates
that v is adjacent to u. Intuitively, a vertex with a small Jordan centrality tends to be located at
the center of the tree. On the contrary, leaves (i.e., vertices with degree equal to one) have the
largest Jordan centralities.

A centroid of a tree T is a vertex that minimizes the maximum size of any of its subtrees.
Formally, a vertex c is a centroid if c = argminu∈T ψT (u). Any tree has at least one and at most
two centroids.
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The Jordan ordering sorts vertices of a tree by increasing values of ψ, with ties resolved ran-
domly. We note σ̂J the resulting estimator, associated with the Jordan ordering of a tree Tn. This
estimator is label-invariant.

The second ordering which will be of interest is the descendant ordering used by Briend et al.
[4]. Given a tree Tn and a vertex u, the descendant centrality is defined as follows:

ψ′
T (u) = n− de(u),

where de(u) denotes the number of descendants of u. If the centroid c and vertex 1 (the root)
coincide, then the descendant ordering and the Jordan ordering coincide (assuming ties are broken
in the same deterministic way). When the root is unknown, which is the case here, this ordering
cannot be practically implemented.

Sorting vertices by increasing values of ψ′
T results in an ordering denoted as σ̂′.

Figure 3: An illustration of a random tree following the URRT model, with n = 15.
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We end the introduction with a lemma which will prove useful later on.

Lemma 1.1 (From Briend et al. [4]). Given a tree T , let c ∈ [n] denote a centroid of T , and let
{1 → c} be the set of vertices on the path connecting 1 to c in T . Then for any v ∈ [n] \ {1 → c},
we have:

ψT (v) = ψ′
T (v).

2 Combinatorics Preliminaries

We introduce this brief section on combinatorics to present a lemma which will prove useful later
in this paper. Given a tree Tn of size n, i.e., with n vertices, let us define Dn := d(1, c), i.e., the
distance between the root and the centroid in Tn. Dn is a random variable, and our aim is to upper
bound E[Dn].

Let T denote the set of finite rooted trees, and Tn the set of finite rooted trees of size n. Given
a vertex i, let d+i denote the number of successors of i. Note that ∀i ∈ [n] \ {1}, d+i = di − 1. Let
(ϕj)j≥0 denote a sequence of positive integers.

Given a tree T ∈ T , it is possible to define the weight of a tree, as initially introduced by Meir
and Moon [8] as follows:

ω : T → N, ω(T ) =
∏
i∈T

ϕd+i
=
∏
j≥0

ϕ
Nj(T )
j ,

where Nj(T ) denotes the number of vertices with exactly j successors in T .

For n ≥ 0, let yn :=
∑

T :|T |=n ω(T ). Note that if every tree T has weight equal to 1, yn is simply
equal to |Tn|.

This allows us to define a probability measure as follows:

∀T ∈ Tn, Pn(T ) =
ω(T )

yn
.

This indeed verifies: ∑
T∈Tn

Pn(T ) = 1.

Remark (URRT model). Define the power series Φ as the exponential generating function
of the sequence ϕn

Φ(x) :=
∑
n≥0

ϕnx
n

n!

and

y(z) :=
∑
n≥0

ynz
n

n!
.

Setting ϕj = 1 for all j ≥ 0 implies:
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• ∀T , ω(T ) = 1, i.e., every tree has weight equal to one.

• yn = |Tn| = (n− 1)!, as there are n possible ways to attach vertex n+ 1 to a tree of size n.

• Finally, define for any tree T ∈ Tn

Pn(T ) :=
ω(T )

yn
=

1

|Tn|
=

1

(n− 1)!
.

Pn is the uniform measure on the set Tn. Attributing a weight of 1 to every tree and picking a
tree uniformly at random is equivalent to building the tree recursively, picking each time a vertex
i ∈ [n] uniformly at random to attach vertex n+ 1.

This results in

y(z) =
∑
n≥0

ynz
n

n!
=
∑
n≥1

zn

n
= − ln(1− z),

and

Φ(x) =
∑
n≥0

ϕnx
n

n!
=
∑
n≥0

xn

n!
= exp(x).

Remark. Note that in the URRT model, Φ can equivalently be defined as Φ(x) =
∑

n≥0 ϕnx
n,

where ϕn = 1
n! (see Wagner and Durant, Section 2 [11]).

(PA model). Let us define the ordinary generating function of the sequence ϕn

Φ(x) :=
∑
n≥0

ϕnx
n

in the PA model. Let ϕj = 1 for all j ≥ 0. This implies ω(T ) = 1 for all T , yn = |T ′
n| =

1 · 3 · 5 · · · (2n − 3) = (2n − 3)!!, where T ′
n denotes the set of finite rooted trees of size n, where

vertices are ordered (i.e., the successors of a vertex are distinguished). Finally, define for any tree
T ∈ T ′

n

Pn(T ) :=
ω(T )

yn
=

1

|T ′
n|

=
1

(2n− 3)!!
.

Similarly, Pn is now the uniform measure on the set T ′
n: attributing a weight of 1 to every plane-

oriented tree (distinguishing the left-to-right successors of a vertex) and picking a tree uniformly
at random is equivalent to building the tree iteratively according to the PA model, i.e., attaching a
new vertex to existing vertices with a probability proportional to the degree of each vertex. Indeed,
distinguishing the successors of a vertex when counting the number of trees in the set T ′

n (which is
what is done above, as every tree has weight equal to 1) is equivalent to modelling the preferential
attachment rule when iteratively building the tree.

This results in

y(z) =
∑
n≥0

ynz
n

n!
= 1−

√
1− 2z

and

Φ(x) =
∑
n≥0

ϕnx
n =

∑
n≥0

xn =
1

1− x
.
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One can observe from the two examples above that the sequence (ϕn)n≥0 encodes the attachment
rule, or, said differently, the tree family. These known results, specific to the URRT and PA
models, have more general expressions. Given a sequence (ϕn)n≥0, let Φ(x) =

∑
n≥0 ϕnx

n be its
characteristic function. It can be shown (see Wagner and Durant, Section 2 [11]) that the expression
of the characteristic function for the general plane-oriented tree (i.e., where successors of a node
are distinguished) is

Φ(x) = (1 + c2x)
1+

c1
c2 ,

with c2 < 0 and c1
c2
< −1. This general expression for the characteristic function is based on a lemma

from Panholzer and Prodinger [10], where c1, c2 verify yn+1/yn = c1n+c2, with yn =
∑

T :|T |=n ω(T )
being the total weight of trees of size n.

For instance, in the PA model, one can observe that yn = (2n− 1)!! verifies yn+1/yn = 2n− 1.
And indeed, taking c2 = −1 and c1 = 2 results in

Φ(x) = (1− x)−1,

which is the result we had previously.

In the affine attachment case, where the weight of vertex i is equal to di+a, a ≥ 0, let ϕ0 = 1 and
ϕn = (a+1)···(a+n)

n! for all n ≥ 1. Using the generalized binomial formula, we obtain the expression
below for the characteristic function of the affine attachment model:

Φ(x) =
∑
n≥0

ϕnx
n

=
∑
n≥0

(
−1− a

n

)
(−1)nxn

= (1− x)1−a,

which corresponds to taking c2 = −1 and c1 = a + 2 in the general expression. Note this is
another way to see that taking a = 0 in the affine attachment model coincides with the PA model.

Recall yn =
∑

T :|T |=n ω(T ) and y(x) =
∑

n≥0
ynxn

n! . Working from the derived power series

y′(x) = (1− (a+ 2)x)−δ,

where δ = 1− 1
a+2 , Wagner and Durant [11] show (see Theorems 6 and 9) that the random variable

Dn converges in expectation to a limit variable D. They obtain

lim
n→∞

E[Dn] = E[D] = δ.

Note a ≥ 0 implies δ ∈ [1/2, 1). This provides us with the useful (asymptotic) upper bound which
will serve later on. It holds that ∀a ≥ 0, for a given n0 large enough and ∀n ≥ n0,

E[Dn] ≤ E[D] + 1 ≤ δ + 1 ≤ 2. (1)
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3 Uniform Attachment Model

3.1 Upper Bound

We consider here the URRT model, and propose an upper bound for E [|σ̂J(i)− σ(i)|]. σ̂J denotes
the ordering obtained using the Jordan centrality. Given this estimator is label-invariant, we can
assume the labelling of the vertices is their time of arrival (i.e. σ = Id). It therefore amounts to
upper bounding the quantity E [|σ̂J(i)− i|].

Proposition 3.1. This proposition is a specific case of Proposition ??, which provides a result in
a more general setting. Dn = d(1, c) is the random variable equal to the distance between the root
and the centroid (taking the closest to the root if two centroids exist) in a tree Tn. For any vertex
i ≥ 3, it holds that:

E[|σ̂J(i)− i|] ≤ E[Dn] + C · i
(
1 +

(
ln
(n
i

))2)
.

Proof. From Lemma 1.1, we obtain that for any vertex i ∈ [n], |σ̂J(i)− σ̂′(i)| ≤ Dn. Hence,

E[|σ̂J(i)− i|] = E[|σ̂J(i)− σ̂′(i) + σ̂′(i)− i|] ≤ E[Dn] + E[|σ̂′(i)− i|]

≤ E[Dn] + C · i
(
1 +

(
ln
(n
i

))2)
.

This is a result we prove in a more general setting later in the paper, in Proposition ??.

3.2 Lower Bound

Still considering the URRT model, we propose a lower bound for R1,j(σ̂) = E
[
|σ̂(j)−σ(j)|

σ(j)

]
, valid for

any label-invariant estimator.

Theorem 3.2. For any label-invariant estimator σ̂, any permutation σ applied to vertices, noting
τ = σ−1 the inverse function of σ, and for any j ∈ [2, ⌊n2 ⌋]

E [|σ̂ ◦ τ(j)− j|] + E [|σ̂ ◦ τ(2j)− 2j|] ≥ 1

6
j.

Furthermore, a direct consequence is that the maximal risk over all vertices verifies:

maxi∈[n]R1,i(σ̂) = maxi∈[n]E
[
|σ̂(i)− σ(i)|

σ(i)

]
≥ 1

24

(
1− 1

n

)
.

Proof. Let us first establish that

E [|σ̂ ◦ τ(j)− j|] + E [|σ̂ ◦ τ(2j)− 2j|] ≥ 1

6
j.

Consider a tree Tn with n vertices generated by the URRT model, and an ordering σ assigning
the time of arrival to each vertex’s label. We note τ = σ−1 the inverse function of σ (i.e., τ assigns
a label to a time of arrival). For any label-invariant ordering estimator σ̂, and any vertex j ∈ [n],
we have:
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R1,j(σ̂) = E
[
|σ̂(j)− σ(j)|

σ(j)

]
= E

[
|σ̂ ◦ τ(i)− i|

i

]
for a given i ∈ [n], as τ is a bijection

≥ 1

n
E [|σ̂ ◦ τ(i)− i|] . (1)

∀j ≥ 2, let us introduce the event Aj as follows:

Aj := {vertices j and 2j are leaves, connected to vertices whose arrival time is ≤ j − 1}.

Note Aj is the intersection of two independent events, whose probabilities can be directly
calculated, namely:

Aj,1 := {vertices j + 1, . . . , 2j − 1 do not connect to vertex j},

whose probability is

j − 1

j
× j

j + 1
× · · · × 2j − 3

2j − 2
=

1

2
, and

Aj,2 := {vertex 2j connects to a vertex whose arrival time is ≤ j − 1},

whose probability is

j − 1

2j − 1
.

By independence, we thus obtain, ∀j ≥ 2,P{Aj} = j−1
2(2j−1) ≥

1
6 .

Conditioning on Aj , we can lower bound our initial expression as follows, for any j ∈ [2, ⌊n2 ⌋]:

E [|σ̂ ◦ τ(j)− j|+ |σ̂ ◦ τ(2j)− 2j|] ≥ P{Aj}E [|σ̂ ◦ τ(j)− j|+ |σ̂ ◦ τ(2j)− 2j| | Aj ] .

Let us note δ the permutation swapping vertices j and 2j (i.e., δ is the (j, 2j) transposition).
T δ denotes the tree T with δ applied to its vertices. Decomposing on the various realizations of a
tree T following the URRT model, it holds that:

E [|σ̂ ◦ τ(j)− j|+ |σ̂ ◦ τ(2j)− 2j| | Aj ] =
∑
t

E [|σ̂ ◦ τ(j)− j| | Aj , T = t]P{T = t | Aj}

+
∑
t

E
[
|σ̂ ◦ τ(2j)− 2j| | Aj , T = tδ

]
P{T = tδ | Aj}

As a consequence of Theorem 4 of Crane and Xu [5], which establishes that two trees T1 and
T2 generated by the URRT model with the same shape albeit a different labelling have the same
probability (the URRT model is said to be shape exchangeable), it follows that P{T = t | Aj} =
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P{T = tδ | Aj}.

The expression above can hence be rewritten as:

E [|σ̂ ◦ τ(j)− j|+ |σ̂ ◦ τ(2j)− 2j| | Aj ] =
∑
t

P{T = t | Aj} (E [|σ̂ ◦ τ(j)− j| | Aj , T = t]

+E
[
|σ̂ ◦ τ(2j)− 2j| | Aj , T = tδ

])
.

Using the triangle inequality and the fact that

(σ̂ ◦ τ(j) | Aj , T = t)
d
= (σ̂ ◦ τ(2j) | Aj , T = tδ),

we obtain

E [|σ̂ ◦ τ(j)− j| | Aj , T = t] + E
[
|σ̂ ◦ τ(2j)− 2j| | Aj , T = tδ

]
≥ j,

which, using the conditioning on Aj , results in

E [|σ̂ ◦ τ(j)− j|] + E [|σ̂ ◦ τ(2j)− 2j|] ≥ 1

6
j, for any j ∈

[
2,
⌊n
2

⌋]
.

This is the first lower bound we wanted to establish. Finally, evaluating the expression above
for j = ⌊n2 ⌋, it holds that:

E
[∣∣∣σ̂ ◦ τ

(⌊n
2

⌋)
−
⌊n
2

⌋∣∣∣]+ E
[∣∣∣σ̂ ◦ τ

(
2
⌊n
2

⌋)
− 2

⌊n
2

⌋∣∣∣] ≥ 1

6

⌊n
2

⌋
≥ n− 1

12
.

Hence,

E
[∣∣∣σ̂ ◦ τ

(⌊n
2

⌋)
−
⌊n
2

⌋∣∣∣] ≥ n− 1

24
or E

[∣∣∣σ̂ ◦ τ
(
2
⌊n
2

⌋)
− 2

⌊n
2

⌋∣∣∣] ≥ n− 1

24
.

This implies

maxj∈[n]E [|σ̂ ◦ τ(j)− j|] ≥ n− 1

24
.

which, plugged back into (1), concludes the proof:

maxj∈[n]R1,j(σ̂) ≥
1

24

(
1− 1

n

)
.
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4 Affine Attachment Model

4.1 Context

In the affine attachment (AA) model, the attachment of a new node to an existing tree is based on
vertex i having a weight of di + a, where di is the degree of vertex i and a is a parameter between
0 and +∞.

Hence, given a tree Tn of size n,

P(vertex n+ 1 connects to vertex i) =
di + a∑
i(di + a)

=
di + a

2(n− 1) + an
=

di + a

(2 + a)n− 2

Note that a = 0 corresponds to the preferential attachment model, and a→ ∞ to the uniform
attachment model.

Let Tn be a tree with n vertices. In such a model, for a given tree T1 with n1 vertices, we note
that:

P(n+ 1 connects to T1) =

∑
i∈T1

(di + a)

(2 + a)n− 2
=

(2 + a)n1 − 1

(2 + a)n− 2

Let γ := 1
2+a . We hence have

P(n+ 1 connects to T1) =
n1 − γ

n− 2γ
.

Thus, γ = 1
2 corresponds to the preferential attachment model, and γ → 0 to the uniform attach-

ment model.

For a vertex j, we denote by de(j) the set of vertices i whereby j belongs to the path between
the root and vertex i, excluding j (in other words the strict descendants of j).

We observe that

P(among m new connections, j + i1, . . . , j + ik ∈ de(j)) =

(j − 1− γ)

(j − 2γ)
· (j − γ)

(j + 1− 2γ)
· . . . · (j + i1 − 3− γ)

(j + i1 − 2− 2γ)
{|i1−1|∼T\T1}

· (1− γ)

(j + i1 − 1− 2γ)
{i1∼T1}

·(j + i1 − 2− γ)

(j + i1 − 2γ)
{i1+1∼T\T1} ·

· (2− γ)

(j + i2 − 1− 2γ)
{i2∼T1} · . . . ·

(k − γ)

(j + ik − 1− 2γ)
{ik∼T1} ·

·(j +m− k − 2− γ)

(j +m− 1− 2γ)
{j+m∼T\T1}

=
(1− γ)(2− γ) . . . (k − γ)

(j − 2γ)(j + 1− 2γ) . . . (j +m− 1− 2γ)
· (j − 1− γ)(j − γ) . . . (j +m− k − 2− γ)
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Let us note this probability pj,m,k. Indeed, pj,m,k doesn’t depend on the values of i1, . . . , ik (i.e.,
the order of the various connections). With a slight abuse of notation, we identify the set de(j)
with its cardinal, and note den(j) the number of descendants of j at a given time n. We thus obtain
that:

P(den(j) = k) =

(
n− j

k

)
· pj,n−j,k

=

(
n− j

k

)
· (1− γ)(2− γ) · · · (k − γ)

(j − 2γ)(j + 1− 2γ) · · · (n− 1− 2γ)
· (j − 1− γ)(j − γ) · · · (n− k − 2− γ)

4.2 Upper Bound

Given a vertex i ≥ 3, we now look to upper bound E[|σ̂J(i)− i|].

We start by upper bounding E[σ̂′(i)] for a given vertex i. Recall σ̂J denotes the estimator or-
dering vertices using the Jordan centrality, and σ̂′ denotes the estimator ordering vertices by their
number of descendants.

Theorem 4.1. For any vertex i ≥ 3, it holds that:

E[σ̂′(i)] ≤ i

[
1 +

(n
i

)γ
+

15

γ

((n
i

)γ
− 1
)(

1 +
(
ln
(n
i

))1−γ
)]

,

which can also be expressed as

E[σ̂′(i)] ≲ nγi1−γ

(
1 +

(
ln
(n
i

))1−γ
)
,

where the constant on the right hand side also depends on γ. Specifically, in the PA and URRT
models, we obtain, respectively:

E[σ̂′(i)] ≤ C1/2 ·
√
i · n

(
1 +

√(
ln
(n
i

)))
, and

E[σ̂′(i)] ≤ C0 · i
(
1 +

(
ln
(n
i

))2)
.

Proof. Fix n, let Tn be a tree of size n, and i a vertex. We have:

σ̂′(i) ≤ n−#{j : de(j) < de(i)} = #{j : de(j) ≥ de(i)}

Hence:

E[σ̂′(i)] ≤ E

∑
j ̸=i

1{de(j)≥de(i)}

+ 1

≤
∑
j ̸=i

P(de(j) ≥ de(i)) + 1

14



We also note that for any τ > 0,

P(de(j) ≥ de(i)) ≤ P
(
de(j)

n
≥ τ

)
+ P

(
de(i)

n
≤ τ

)
Upper bounding P(de(j) = k) for j ≥ 3, can be done as follows. We note that:

P(de(j) = k) = A ·B · C

where:

A =
(1− γ) · · · (k − γ)

k!

B =
(j − 1− γ) · · · (n− 2− γ)

(j − 2γ) · · · (n− 1− 2γ)

C =
(n− j)!/(n− j − k)!

(n− k − 1− γ) · · · (n− 2− γ)

We have:

A =

k∏
l=1

l − γ

l

We can rewrite A as:

A = exp

(
k∑

l=1

ln

(
l − γ

l

))
≤ exp

(
−γ

k∑
l=1

1

l

)
Which results in:

A ≤ 1

kγ

Next, for j ≥ 2,

B =
n−1∏
l=j

l − 1− γ

l − 2γ

=
n−1∏
l=j

(
1 +

γ − 1

l − 2γ

)

≤ exp

(γ − 1)

n−1∑
l=j

1

l − 2γ


≤ exp

(γ − 1)
n−1∑
l=j

1

l


≤ exp

(
(γ − 1)

∫ n

j

dt

t

)
=

[
exp

(
ln

(
n

j

))]γ−1

=

(
n

j

)γ−1

.

15



And hence:

B ≤
(
n

j

)γ−1

Finally, for j ≥ 3, which implies j − 2− γ ≥ 0,

C =
(n− j − k + 1) · · · (n− j)

(n− k − 1− γ) · · · (n− 2− γ)

=

n∏
l=n−k+1

l − j

l − 2− γ

=

n∏
l=n−k+1

(
1 +

2 + γ − j

l − 2− γ

)

= exp

(
n∑

l=n−k+1

ln

(
1 +

2 + γ − j

l − 2− γ

))

≤ exp

(
n∑

l=n−k+1

2 + γ − j

l − 2− γ

)

= exp

(
n−2∑

l=n−k−1

2 + γ − j

l − γ

)

≤ exp

(
(2 + γ − j)

n−2∑
l=n−k−1

1

l

)

≤ exp

(
(2 + γ − j)

∫ n−1

n−k−1

dt

t

)
=

(
n− 1

n− k − 1

)2+γ−j

=

(
n− k − 1

n− 1

)j−2−γ

≤
(
n− k

n

)j−2−γ

=

(
1− k

n

)j−2−γ

≤
(
1− k

n

)j−3

.

Hence,

C ≤
(
1− k

n

)j−3

Thus, for k ≥ 1 and j ≥ 3,

P(den(j) = k) ≤ 1

kγ
·
(
n

j

)γ−1

·
(
1− k

n

)j−3

16



For k = 0 and j ≥ 3,

P(de(j) = 0) = P(j has no descendants) =
(j − 1− γ)(j − γ) · · · (n− 2− γ)

(j − 2γ)(j + 1− 2γ) · · · (n− 1− 2γ)
= B ≤

(
n

j

)γ−1

.

Hence, for any τ > 0 and for any vertex i ≥ 3,

P
(
de(i)

n
≤ τ

)
= P(de(i) = 0) +

⌊τn⌋∑
k=1

P(de(i) = k)

≤
(n
i

)γ−1
+

⌊τn⌋∑
k=1

1

kγ
·
(n
i

)γ−1
·
(
1− k

n

)i−3

≤
(n
i

)γ−1

1 + ⌊τn⌋∑
k=1

1

kγ

 .
Given

⌊τn⌋∑
k=1

1

kγ
≤ (τn)1−γ

1− γ
,

it holds that

P
(
de(i)

n
≤ τ

)
≤
(n
i

)γ−1
[
1 +

(τn)1−γ

1− γ

]
≤
(n
i

)γ−1
+

(τi)1−γ

(1− γ)
.

Similarly, ∀j ≥ 3,

P
(
de(j)

n
≥ τ

)
≤

n∑
k=⌊τn⌋

P(de(j) = k)

≤
n∑

k=⌊τn⌋

1

kγ
·
(
n

j

)γ−1

·
(
1− k

n

)j−3

≤
(
n

j

)γ−1

· 1

⌊τn⌋γ
·

n∑
k=⌊τn⌋

(
1− k

n

)j−3

.

Using a sum/integral comparison,

1

n

n∑
k=⌊τn⌋

(
1− k

n

)j−3

≤
n∑

k=⌊τn⌋

∫ k
n

k−1
n

(1− t)j−3 dt

=

∫ 1

⌊τn⌋−1
n

(1− t)j−3 dt

=

(
1− ⌊τn⌋

n + 1
n

)j−2

j − 2

≤
(
1− τ + 2

n

)j−2

j − 2
.

17



Furthermore, upper bounding n
⌊τn⌋ can be done as follows:

n

⌊τn⌋
≤ n

τn− 1
=

n

τ(n− 1
τ )
.

Note that n
n− 1

τ

≤ C if and only if:

n ≤ Cn− C

τ

⇐⇒ C

τ
≤ n(C − 1)

⇐⇒ τ

C
≥ 1

n(C − 1)

⇐⇒ τ ≥ C

n(C − 1)
.

Hence, provided τ ≥ 2
n , it holds that

n
n− 1

τ

≤ 2, and thus:

n

⌊τn⌋
≤ 2

τ
.

We finally obtain:

P
(
de(j)

n
≥ τ

)
≤ 2γ · 1

jγ−1
· 1

τγ
·
(
1− τ + 2

n

)j−2

j − 2
.

This results in the following upper bound: ∀τ ≥ 2
n ,∀i, j ≥ 3,

P(de(j) ≥ de(i)) ≤
(n
i

)γ−1
+

(τi)1−γ

(1− γ)
+ 2γ · 1

jγ−1
· 1

τγ
·
(
1− τ + 2

n

)j−2

j − 2
.

Substituting τ for l
j−2 , where l := 2 + (1 − γ) ln

(
j
i

)
and j > i, we obtain the following set of

inequalities:

P(de(j) ≥ de(i)) ≤
(n
i

)γ−1
+

1

1− γ

(
il

(j − 2)

)1−γ

+ 2γ
(

jl

j − 2

)1−γ (j − 2

l

) (
1− τ + 2

n

)j−2

j − 2

≤
(n
i

)γ−1
+

1

1− γ

(
i

j − 2

)1−γ

l1−γ +
2γ

l
· 31−γ · l1−γ

(
1− τ +

2

n

)j−2

≤
(n
i

)γ−1
+

1

1− γ

(
i

j − 2

)1−γ

l1−γ + 3 · l−γ exp

(
(j − 2) ln

(
1− τ +

2

n

))
≤
(n
i

)γ−1
+

1

1− γ

(
i

j − 2

)1−γ

l1−γ + 3 · l−γ exp

(
(j − 2)

(
2

n
− τ

))
≤
(n
i

)γ−1
+

1

1− γ

(
i

j − 2

)1−γ

l1−γ + 3 · l−γ · e2 · e−l

≤
(n
i

)γ−1
+

1

1− γ

(
i

j

)1−γ ( j

j − 2

)1−γ

l1−γ + 3 · l−γ ·
(
i

j

)1−γ

as e−l = e−2

(
i

j

)1−γ

≤
(n
i

)γ−1
+ 6 ·

(
i

j

)1−γ (
l1−γ +

1

2
l−γ

)
as

1

1− γ

(
j

j − 2

)1−γ

≤ 6.
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Let us now upper bound l1−γ +
1

2
l−γ .

As
l

2
≥ 1, we obtain l1−γ +

1

2
l−γ ≤ 5

4
l1−γ

≤ 5

4

(
2 + (1− γ) ln

(
j

i

))1−γ

≤ 5

2

(
1 + ln

(
j

i

))1−γ

≤ 5

2

(
1 +

(
ln

(
j

i

))1−γ
)

as 0 < 1− γ < 1.

Therefore, for i, j ≥ 3,

P(de(j) ≥ de(i)) ≤
(n
i

)γ−1
+ 15 ·

(
i

j

)1−γ
(
1 +

(
ln

(
j

i

))1−γ
)

Remark (limit cases). Note that γ → 0 (i.e., the URRT model) results in τ = 2+ln(j/i)
j−2 , and

P(de(j) ≥ de(i)) ≤ i

n
+ 15

i

j

[
1 + ln

(
j

i

)]
,

and γ = 1
2 (i.e., the PA model), results in τ = 4+ln(j/i)

2(j−2) and

P(de(j) ≥ de(i)) ≤
√
i

n
+ 15

√
i

j

[
1 +

√
ln

(
j

i

)]
.

We can now conclude. For any vertex i ≥ 3,

E[σ̂′(i)] ≤
n∑

j=1
j ̸=i

P(de(j) ≥ de(i)) + 1

≤
i−1∑
j=1

P(de(j) ≥ de(i)) +

n∑
j=i+1

P(de(j) ≥ de(i)) + 1

≤ i+
n∑

j=i+1

(n
i

)γ−1
+ 15

(
i

j

)1−γ
[
1 +

(
ln

(
j

i

))1−γ
]

Using a sum/integral comparison, we observe

n∑
j=i+1

(
1

j

)1−γ

≤
∫ n

i

dt

t1−γ
=
nγ − iγ

γ
.
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Furthermore,

n∑
j=i+1

(
1

j

)1−γ (
ln

(
j

i

))1−γ

≤
(
ln
(n
i

))1−γ
n∑

j=i+1

(
1

j

)1−γ

≤
(
ln
(n
i

))1−γ nγ − iγ

γ
.

Hence, noting that (n− i)
(
n
i

)γ−1 ≤ i
(
n
i

)γ
, we obtain

E[σ̂′(i)] ≤ i+ (n− i)
(n
i

)γ−1
+ 15

[
i1−γ · 1

γ
[nγ − iγ ] + i1−γ · 1

γ
[nγ − iγ ]

(
ln
(n
i

))1−γ
]

≤ i

[
1 +

(n
i

)γ
+

15

γ

((n
i

)γ
− 1
)
+

15

γ

(
ln
(n
i

))1−γ [(n
i

)γ
− 1
]]

≤ i

[
1 +

(n
i

)γ
+

15

γ

((n
i

)γ
− 1
)(

1 +
(
ln
(n
i

))1−γ
)]

which concludes the proof.

A direct consequence of the proposition above is the following upper bound:

E[|σ̂′(i)− i|] ≤ E[σ̂′(i)] + i ≲ nγi1−γ

(
1 +

(
ln
(n
i

))1−γ
)

Remark (affine parameter a). In the affine attachment model, vertex i has a weight equal to
di + a, where di is the degree of i, with a ≥ 0. One may legitimately wonder if this model is still
well-defined, and whether results on E[σ̂′(i)] still hold if a < 0.

Given a tree Tn of size n, recall vertex n + 1 connects to the tree according to the following
distribution: ∀i ∈ {1, . . . , n},

P(vertex n+ 1 connects to vertex i) =
di + a

(2 + a)n− 2
.

Hence, for the model to be well-defined, it must at least verify the conditions below:

• ∀i ∈ {1, . . . , n}, P(vertex n+ 1 connects to vertex i) ≥ 0,

•
∑n

i=1 P(vertex n+1 connects to vertex i) = 1, which in turn implies ∀i ∈ {1, . . . , n}, P(vertex n+
1 connects to vertex i) ≤ 1.

If −1 < a < 0, these conditions are satisfied, the model is well-defined, and we have γ = 1
2+a ∈

(0, 1). Notably, the upper bound for E[σ̂′(i)] is still valid, as it is currently written, for γ ∈ (0, 1).

If a = −1, note a tree of size 2 (consisting of 2 vertices and an edge) cannot grow further using
the distribution above. Indeed, vertex 3 connects to both vertex 1 and vertex 2 with probabil-
ity equal to 0, which doesn’t satisfy the condition

∑n
i=1 P(vertex n + 1 connects to vertex i) = 1.
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However, if the starting point is a larger tree where the set {i : di > 1} is non-empty, the recursive
process is well defined for a = −1. This would imply the affine parameter a changes in time, i.e.,
is a function of n, and is a case we do not explore here.

If −n < a < −1, the model cannot be defined the way it currently is, as P(vertex n +
1 connects to vertex i) would potentially take negative values. Indeed,

P(vertex n+ 1 connects to vertex i) =
di + a

(2 + a)n− 2
< 0

⇐⇒
(
a < −di and a >

2

n
− 2

)
or

(
a > −di and a <

2

n
− 2

)
.

For instance, for a large n and taking −2 < a < −1, the probability that a new vertex connects
to a leaf, whose degree is equal to one, cannot be defined as it would take a negative value. Simply
changing the distribution to

P(vertex n+ 1 connects to vertex i) =
max(0, di + a)

(2 + a)n− 2

doesn’t solve the issue, as in some pathological cases this probability can be greater than 1: consider
for instance a tree with 6 vertices, where vertex 1 is connected to all vertices 2 to 6, and parameter
a = −3

2 , one would obtain

P(vertex 7 connects to vertex 1) =
5− 3

2

(2− 3
2)× 6− 2

=
7

2
> 1.

More generally, for a given n and a ∈ (−n,−1), if vertex i is such that di > (n− 1)(a+2) ⇐⇒
di + a > (2 + a)n− 2 ⇐⇒ di+a

(2+a)n−2 > 1, the model is undefined.

Finally, if a ≤ −n, the recursive process can be defined in the sense that the conditions

• ∀i ∈ {1, . . . , n}, P(vertex n+ 1 connects to vertex i) ≥ 0,

• ∀i ∈ {1, . . . , n}, P(vertex n+ 1 connects to vertex i) ≤ 1,

•
∑n

i=1 P(vertex n+ 1 connects to vertex i) = 1

are met.

However, the recursive process would only be licit for n ≤ −a. Intuituvely, this corresponds to
a process limited in time. For a large n, this would correspond to γ < 0 albeit close to 0. The
upper bound for E[σ̂′(i)] would need to be adapted as the current proof does not hold for γ < 0.

Using the previous proposition, we are able to derive an upper bound for E[|σ̂J(i)− i|].

Theorem 4.2. Recall Dn = d(1, c) is the random variable equal to the distance between the root
and the centroid (taking the closest to the root if two centroids exist) in a tree Tn. For any vertex
i ≥ 3, it holds that:

E[|σ̂J(i)− i|] ≤ E[Dn] + Cγ · nγi1−γ

(
1 +

(
ln
(n
i

))1−γ
)
.
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Proof. Using Lemma 1.1, as ψT and ψ′
T coincide outside of {1 → c}, it holds that for any vertex

i ∈ [n], |σ̂J(i)− σ̂′(i)| ≤ Dn. Hence,

E[|σ̂J(i)− i|] = E[|σ̂J(i)− σ̂′(i) + σ̂′(i)− i|] ≤ E[Dn] + E[|σ̂′(i)− i|]

≤ E[Dn] + Cγ · nγi1−γ

(
1 +

(
ln
(n
i

))1−γ
)

4.3 Lower Bound

Still considering the affine attachment model, whereby vertex i has a weight of di + a, a ∈ [0,∞),
and for any label-invariant estimator σ̂, we derive a lower bound for E[|σ̂◦τ(j)−j|+ |σ̂◦τ(2j)−2j|].

Theorem 4.3. In the affine attachment model, for any label-invariant estimator σ̂ and any vertex
j ∈ [2, ⌊n/2⌋], it holds that:

E[|σ̂ ◦ τ(j)− j|+ |σ̂ ◦ τ(2j)− 2j|] ≥ 1

6
j.

Proof. The proof is directly adapted from Proposition ?? where the only meaningful change is
related to the attachment process, hence related to the probability of the event Aj used in the
conditioning.

LetAj,1 denote the event {vertices j+1, . . . , 2j−1 do not connect to vertex j, i.e., j remains a leaf}.

Its probability can be directly computed and is equal to:

(j − 1− γ)

(j − 2γ)
· (j − γ)

(j + 1− 2γ)
· . . . · (2j − 3− γ)

(2j − 2− 2γ)

Let Aj,2 denote the event {vertex 2j connects to a vertex of rank ≤ j − 1}. Let T1 denote the
subtree consisting of vertices {1, . . . , j − 1}. Given that at least vertices j and j + 1 are connected
to T1, it holds that

∑
i∈T1

(di+a) =
∑

i∈T1
di+a(j−1) ≥ 2(j−2)+1+1+a(j−1) = (j−1)(2+a).

As γ = 1
(2+a) , we thus obtain

P(2j ∼ T1) ≥
(j − 1)(2 + a)

(2j − 1)(2 + a)− 2
=

(j − 1)

(2j − 1− 2γ)

Finally, noting Aj = Aj,1 ∩Aj,2, we have:

P(Aj) = P(Aj,1) · P(Aj,2) by independence

≥ (j − 1− γ)

(j − 2γ)
· (j − γ)

(j + 1− 2γ)
· . . . · (2j − 3− γ)

(2j − 2− 2γ)
· (j − 1)

(2j − 1− 2γ)

≥ (j − 1− γ)

(j − 2γ)
· (j − 2γ)

(j + 1− 2γ)
· . . . · (2j − 3− 2γ)

(2j − 2− 2γ)
· (j − 1)

(2j − 1− 2γ)

≥ 1

2
· (j − 1)

(2j − 1− 2γ)

≥ 1

2
· 1
3
=

1

6
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The remaining steps of the proof, i.e., conditioning on Aj , introducing the transposition δ =
(j, 2j), using Theorem 4 of Crane and Xu [5], which establishes that in the URRT, PA or AA
model, two trees with the same shape but different labelling have the same probability (these mod-

els are said to be shape exchangeable), and using the distribution equality (σ̂ ◦ τ(j) | Aj , T = t)
d
=

(σ̂◦τ(2j) | Aj , T = tδ) are exactly the same and still hold in the case of the affine attachment model.

Hence, the initial result from the URRT model (where γ → 0) can be extended here for any
γ ∈ (0, 1/2] and we obtain:

E [|σ̂ ◦ τ(j)− j|] + E [|σ̂ ◦ τ(2j)− 2j|] ≥ 1

6
j, for any j ∈

[
2,
⌊n
2

⌋]
.
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