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1 Introduction

1.1 Why is sampling important?

Sampling from complex probability distributions is a fundamental problem in math-
ematics, computer science, and statistics. A few applications (and open questions)
are given below.

One of the main challenges lies in efficiently sampling from distributions defined
on large or high-dimensional spaces. In many cases, direct sampling is computation-
ally infeasible due to the complexity of the distribution or the dimensionality of the
space. Therefore, efficient algorithms for sampling are useful.

Applications in Machine Learning and Data Science

e Generative Models: Techniques like diffusion models, GANs, and VAEs
rely on efficient sampling to generate realistic data.

e Bayesian Inference: Sampling algorithms, such as Markov Chain Monte
Carlo (MCMC), are used for approximating posterior distributions in Bayesian
models.

¢ High-Dimensional Optimization: Sampling is used to understand the ge-
ometry of loss landscapes, especially in neural networks.
Intersection with Statistical Physics
e Sampling from high-dimensional distributions is analogous to studying the
equilibrium properties of physical systems (e.g., spin glasses).
High-Dimensional Challenges

e In modern problems, distributions often live in extremely high dimensions
(e.g., hypercubes).

e Sampling efficiently from such distributions while maintaining accuracy is a
major computational and mathematical challenge.
Open Questions

e Computational Complexity: Sampling is tied to hard problems in com-
puter science, such as approximating the partition function or sampling in
NP-hard combinatorial spaces.

e Connections to Optimization: Why does sampling outperform optimiza-
tion in some cases? This remains a hot topic in stochastic methods.

e New Methods for High-Dimensional Sampling: Designing methods that
scale with dimension without losing accuracy is an ongoing challenge.



1.2 Markov chains as a tool for sampling

Markov chains provide a powerful and widely used framework for sampling from
complex probability distributions. The key idea is to design a Markov chain whose
stationary distribution matches the target distribution of interest. By running the
chain for a sufficient amount of time, we can obtain samples that approximate the
target distribution (more on stationary distributions and sufficient conditions later).

The performance of a Markov chain-based sampling algorithm is closely related
to its mizing time, which measures how quickly the chain converges to its stationary
distribution. Establishing precise bounds on the mixing time is therefore essential
to ensure the efficiency and reliability of these algorithms.

1.3 Objectives of this report

This report aims to provide a pedagogical exploration of a recent unifying framework
introduced in the paper by Yuansi Chen and Ronen Eldan. The framework bridges
two major techniques for analyzing mixing times:

e Spectral independence, which has proven effective in discrete settings such
as graphical models.

e Stochastic localization, a technique that has been applied in both continu-
ous and discrete settings.

The paper is particularly noteworthy because it:
e Unifies these two seemingly unrelated techniques under a single framework.

e Provides simplified proofs of existing results without relying on high-dimensional
expanders (HDX), which are technically challenging.

e Extends the applicability of these techniques.

2 Fundamental Concepts

2.1 Markov Chains and Stationary Distributions

A Markov chain is a sequence of random variables Xg, X1, X5, ... where the distri-
bution of each state X,, depends only on the previous state X,,_;.

Formally, we define a Markov chain by its transition matriz (or operator) P,
which provides the probability of moving from one state to another. If we denote
the state space of the chain by S (which can be discrete or continuous), then the
transition matrix P is a function that assigns to each pair of states x,y € S the
probability of moving from x to y, that is, P(z,y) = P(X,11 =y | X,y = 2).



One of the key concepts in the study of Markov chains is the stationary distribu-
tion. A distribution v over the state space § is said to be stationary for a Markov
chain with transition operator P if it satisfies the following equation:

Py =v

In other words, the stationary distribution is invariant under the action of the
transition matrix.

Sufficient conditions for the existence of a stationary distribution are:
- Irreducibility: Every state can be reached from every other state in a finite number
of steps.
- Aperiodicity: The chain does not get ”stuck” in cycles, meaning the greatest com-
mon divisor of the lengths of all possible return times to any state is 1.
- Positive recurrence: Every state is visited infinitely often with probability 1, and
the expected return time to any state is finite.

When these conditions hold, the Markov chain has a unique stationary distribu-
tion, and the chain will converge to this distribution as n — oo, regardless of the
initial state.

2.2 Mixing Times and Their Significance

The mizing time of a Markov chain provides a measure of how quickly the chain
converges to its stationary distribution from an arbitrary initial distribution.

Given an initial distribution y, which is absolutely continuous with respect to a
stationary distribution v, consider the total-variation mixing time as follows:

tmix (P, € ) = min {t >0 | sup |[P'[u](A) — v(A)] < 6} :
ACS
where P'[u] represents the distribution of the chain at time ¢ when starting from
the initial distribution p, and the total variation distance between the distribution
of the chain at time t and the stationary distribution v is bounded by ¢ for all mea-
surable sets A C S. This provides a precise quantitative measure of how long it
takes for the chain to become ”close” to the stationary distribution.

Moreover, we define the global mixing time as the maximum mixing time over all
possible initial states. Specifically, for any x € S, let §, denote the Dirac measure
at x, i.e., 05(A) = l{zeay. The global mixing time is then defined as:

mixPa = tmixpaacc
tmix (P, €) max (P, e, 6,)

In practical terms, this tells us how many steps we need to run the Markov chain
to obtain samples that are close to the target stationary distribution.



3 Existing Techniques for Mixing Bounds

3.1 Our setting

The authors consider the following framework: a state-space Q (for simplicity one
can assume R™ or the hypercube {—1,+1}").

The main objective is to sample for a probability measure v. For this, we want
to construct a reversible Markov chain that will have v as stationary measure.

Taking the functional equalities point of view, standard Markov chain analysis
relates the speed of convergence to the stationary measure v to the spectral gap

A(P), defined as A(P) :==1— ¢ﬁ3f_off¢;?ﬁy’ with ¢ : Q@ — R.

If we have a lower bound for the spectral gap, we get the following upper bound
for the mixing time:

tmix (P &) < Agap(P) ! (log (%) + log (é)) :

where n = min v(z).

This upper bound is only useful when the measure assigns positive mass to all
points. Usually 7 is of order e, which means we get a poly-(n) order upper-bound.

Hence, to get polynomial time mixing time, getting a lower bound on the spectral
gap can be a sufficient condition to get polynomial time mixing time, whatever the
starting point of the Markov Chain.

3.2 Obstacles to fast mixing and sampling via local updates

This section aims to be more on the intuition side, to try to understand obstacles
to fast mixing times and how they may relate the covariance structure of the high-
dimensional measure.

Let us consider Markov chains that do local updates only (for computational
simplicity).

This means, if we consider a graph, then, at each step, we only update one co-
ordinate of the graph, while keeping the other coordinates fixed.

One case is Glauber dynamics. For example, fix v a probability on the hypercube
in dimension n. Given x a configuration in the hypercube, first pick a coordinate
i € 1...n uniformly at random, then generate a point y from the restriction of v to
the hypercube minus the i** coordinate.

In other words,



1, vy
oo = Loy 1 uy)

Such markovian dynamics converge to the measure v (by reversibility of (P, v)).
One can ask oneself what are the obstacles to fast mixing in that case.

Let us consider Glauber dynamics on the Ising model. In the low temperature
regime (high (), adjacent points want to point in the same direction. Thus, in a
very low temperature regime, if one state is positive, then this will still have a strong
correlation with the state of far-away sites.

If one considers the average spin of a global configuration, there are two very
likely configuration types, as 3 tends to +o00. A large mass will be given two con-
figurations with average spins close to +1 and those close to —1, and low mass for
average spins close to 0.

This has strong implications for local dynamics like Glauber dynamics. If one
wants to sample efficiently, one would want to be able to go from a state with an
average spin close to —1 to a state with average spin close to +1 (since they are the
two most likely configurations), but with a very high §, the Glauber dynamcics will
take exponential time to transition from the first state to the second and will get
trapped in one of the two macro-states.

This comes as natural way to see how obstacles to fast mixing may arise.

In a way that we will not detail too much in this report, this has to do with the
covariance matrix or operator of the measure we wish to sample from. Intuitively,
when ||Cov(v)||op > 1, this allows for different configurations that are very hard to
transition locally from to another in polynomial time.

In this case, the local property of Glauber dynamics fails to capture the long
range-correlations between states, which should be reflected in our sampling strategy
and process.

3.3 Localisation schemes
3.3.1 Definitions

The key contribution by the authors is to change the point of view slightly away
from Markov chains. To find conditions for fast mixing (i.e in our case, a lower
bound for the spectral gap), is to actually consider a stochastic process of measures
rather than a Markov chain directly.

Formally the authors define a localization process on ) as a measure-valued
stochastic process (14):>0 which satisfies the following properties:



(P1) Almost surely, 14 is a probability measure on € for all .
(P2) For every measurable A C €2, the process t — 14(A) is a martingale.

(P3) For any measurable A C €2, the process v;(A) almost surely converges to either
Oorlast— oo.

First, we remark that the localisation process is a process of random measures,
starting from the measure which me aim to sample.

Second, this process can be defined both in continuous and discrete times (one
can always take a constant process on intervals of the form [k, k + 1) for k € Z.

The authors then introduce a localization scheme on {2 as a mapping that assigns
to each probability measure v € M(2) a localization process (v):>o which satisfies
Vg = V.

If L is a localization scheme and (14):>0 = L(v), then we say that (14);>0 is the
localization process associated with v via the localization scheme L.

We thus get for each measurable A C €2, the localisation scheme starting at v
defines a martingale that is valued in [0, 1], and thus bounded in L? for all p, and
thus converges almost surely. Thus, the stochastic process converges almost surely
to a measure v4..

The three properties of the definition ensure that v, = dx, where X ~ v. The
limiting object is thus a random probability measure, which ensure that after suffi-
cient time, the stochastic process yields a close sample of v.

We remark that this localisation scheme theoretically provides a sampling scheme.
We could run this scheme algorithmically, until it converges to a point. But this
may prove to be inefficient, since in most cases it would be computationally costly to
store the whole measure, in particular in a high-dimensional setting. The measure
would live in a space that is exponentially large in the dimension of €). Interestingly,
Montanari, El Alaoui and Sellke [AM21] propose an algorithmic stochastic localiza-
tion framework to sample from the Sherrington-Kirkpatrick Gibbs measure.

What the authors do instead is associate a canonical markov chain to the locali-
sation scheme, for which the stationary probability will be the probability to sample
from.

3.3.2 Markov Chain associated to the localization scheme

For a deterministic time, but also for a stopping time 7, one can associate in a
very natural way a localisation scheme with a sampling algorithm, via the following
Markov chain:



vy (z)vr (A)
v(x)
We can see that the operator defined in (1) is the transition kernel of a reversible

Markov chain whose stationary measure is v.

Px_,A:E{ ], Ve e Q, AcCQ. (1)

Proof. By property (P2), we get E[v,] = v, which means that for v-almost every

x €,
oy e LSO e 12 €O )
v(x) v(z)
so that P,_,. is indeed a probability measure. It is evident from the definition that
for all A, B C €,

dv.(x
/ P, pdv(z) = / E ( )Z/T(B) dv(z) = Elv.(A)v.(B)] = / P, adv(y),
A A dv(x) B
hence the Markov chain is reversible and has stationary measure v.

3.3.3 Spectral gap

If a markov chain has transition kernel P, associated to a stochastic localisation
scheme (1), then one can show that the spectral gap satisfies:

E [Var,, [¢]]
AP) = _— = 2
(P)= il e 2)
On an intuitive level, the right hand side shows how much of the initial variance
the localization scheme keeps at time 7.

This is an important intuition behind localization schemes. Let us think of the
test functions as indicators of a subset A of €2, the localization scheme zooms in over
time to one point of 2. We want to ensure that at time 7, we still see some variance,
i.e we get to a place that still has the variance, where there is still a probability to
be or not to be in the subset A.

The interesting fact is that a localisation scheme is not necessarily implementable
but it gives rise to a naturally implementable process (the markov chain), for which
the convergence speed can be controlled using properties depending on the localisa-
tion scheme.

3.4 Approximate conservation of variance

One of the main tools used to prove mixing bounds for the dynamics associated with
a localization scheme is linked to a property named as approximate conservation of
variance.



In this context, a notion of variance decay can be used in order to prove a spec-
tral gap for log-concave measures.

An interesting insight is a connection between the rate of variance decay and
the covariance structure, at least for a certain class of measures.The authors define
conservation of variance as follows.

A localisation process (1;); is said to satisfy (k1, ke, . . .)-variance conservation up
to time 7, if we have, for all test function ¢ : 2 — R :

E[Var,,[¢] | vi—1] > (1 — ki) Var,,_,[¢], V1 <i<t.

The reason for this definition comes from the fact that we can re-write the
spectral gap as a telescopic product in the following way.

In light of this definition and telescopic equality, an easy consequence is the fol-
lowing proposition which relates variance conservation to the spectral gap of the
dynamics associated with the localization process.

E[Var,,[6]] _

" Var,[¢]
Var, [¢] H

Var,,_[¢]

i=1

Proposition 3.1. If the localization process (v;); satisfies (K1, ..., k)-approzimate
variance conservation, then the dynamics given in equation (1) with 7 =t has a
spectral gap bounded below by H;l(l — Ky).

We now have sufficient conditions which guarantee a lower bound on the spectral
gap and therefore an upper bound on the mixing time of the markov chain.

This framework can be used to prove a result on the mixing time of Glauber dy-
namics first shown by Anari, Liu and Gharan |[ALG20]. The stochastic localisation
framework allows for a much simpler proof than the one by the above-mentioned
authors, who rely on the theory high-dimensional expanders.

The use of simple martingale arguments is arguably one of the strengths of this
contribution, and offers promising applications (see Applications section).

4 Localization Schemes: A Unified Framework

For a given measure v, there are several ways to define a stochastic localisation
scheme. Choosing the scheme in a smart way may lead to proving mixing time
bounds for the associated Markov Chains.

These different schemes provide a generalisation that encompasses many commonly-
used and studied markovian dynamics.
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4.1 Linear-Tilt Localization Schemes

For the case of coordinate-by-coordinate localization this argument recovers the
spectral independence framework of [ALG20], bypassing the need to use highdimen-
sional expanders.

4.1.1 The coordinate-by-coordinate localization example

We start with a simple example presented by the authors. Consider a probability
measure v defined on the hypercube {—1, 1}". The idea of coordinate-by-coordinate
localization is to iteratively refine this measure by conditioning on individual coor-
dinates, one step at a time. Here is how the process works:

1. First, randomly choose a permutation (ki,ks,...,k,) of the indices [n| uni-
formly at random. This ordering determines the sequence in which coordinates
will be revealed.

2. Next, sample a random point X = (X7, Xs, ..., X,,) from the measure v. This
represents the "true” state of the system, which we gradually uncover.

3. For a given time ¢ > 0, define the measure v; as the law of X conditioned on

the values of Xy, X,, ..., Xk, where ¢ = min([t],n). In simpler terms, at
time ¢ < n, we have revealed the first [£] coordinates in the order given by
(k1 kay oo kn).

The sequence (v):>o forms a martingale. Each v is still a probability measure,
but it becomes increasingly "localized” as more coordinates are revealed. By the
time ¢ > n, all coordinates have been revealed, and v; almost surely is a single
point—a Dirac measure.

The intuition is that this localization process incrementally reduces uncertainty
about the random point X. Initially, v represents the full measure over all possible
points in {—1,1}". As we condition on one coordinate after another, v; becomes
progressively more localized.

4.1.2 Linear-tilt localizations

We can now introduce the family of linear-tilt localizations, and exhibit the link
with the coordinate-by-coordinate localization example.

The central idea behind linear-tilt localizations is the following: to transition
from one measure v; to the next measure v, 4, the density of the measure is ad-
justed (or "tilted”) by multiplying it with a random linear function.

This framework is general and applies whenever the state space {2 can be natu-
rally embedded in a linear space. Our focus will primarily be on two key cases: 1.
2 = R™ The continuous setting of the Euclidean space. 2. Q = {-1,1}" C R™
The discrete hypercube setting.

11



To be consistent with the authors’ notations, for v a given probability measure
on the state space €, define its center of mass b(v) as

b(v) ::/Qxi/(dx).

Intuitively at each small time increment dt, the measure v; evolves to vy 4 by
tilting its density proportionally to a random linear function. This process effec-
tively shifts the mass of the measure 14, gradually ”localizing” it.

We can now revisit the coordinate-by-coordinate localization scheme introduced
above and present an equivalent description. This highlights how the scheme fits

into the broader family of linear-tilt localizations.

Let v be a measure on 2 = {—1,1}". Define the following random elements:

- (k1,...,k,): A uniform random permutation of [n].
- (Uy,...,U,): An independent sequence of i.i.d. random variables drawn uniformly
from [—1,1].

1. Initialization: Start with vy = v.
2. Inductive Update: For ¢ = 0,1,...,n — 1, define the next measure v;,; via:
vir(@) = vi(z) (14 (z = b(1i), Z3))
where b(v;) = [, v;(dz) is the center of mass of v;, and Z; is given by:

1 .
7 {l—i-b(ui)ki if b(vi)w, > Ui,
i = €k; - <.

- 1—b(11/1-)k if b(vi)k,

i

Here, €1, ..., e, are the standard basis vectors of R", and b(1;), is the k;-th coordi-
nate of b(v;).

3. Extension to Continuous Time: For ¢ > 0, define v; = v ap.
Verification as a Localization Process

- Normalization: To compute v;,1, the measure v; is multiplied by a linear func-
tion whose expectation is 1. This ensures that v;(Q2) = v;41(9).

- Zero-mean property: The random vector Z; satisfies E[Z;] = 0, verifying the
martingale property of a localization process.

- Pinning interpretation: We can view v;,1 as the pinning of v; along the k;-th

coordinate. Specifically, if xy, = —sign(U; — b(v;), ), then (z — b(v;), Z;) = —1 (and
the linear factor in the update rule vanishes).

12



To conclude on this alternative definition of the coordinate-by-coordinate local-
ization:

The sequence (14):>p can be viewed as a Markov chain on the space of measures.
Each transition involves multiplying the measure’s density by a random linear func-
tion with slopes whose conditional expectation is 0. The slopes are chosen to ensure
that v;1 becomes a restriction of v,.

4.2 Stochastic Localization Driven by a Brownian Motion

Let us now describe the stochastic localization process introduced in [Eld13|. This
process is defined in the continuous setting and is driven by a Brownian motion.

Let v be a probability measure on R™, and let (B;):>o be a standard Brownian
motion in R", adapted to a filtration (F;);>0. Additionally, let (Cy)i>o be an Fi-
measurable process, where C} is a positive-definite n x n matrix for all ¢.

We define a family of probability measures (14);>0 by changing the density of v

as follows: q
v,
() = F(),

where the functions Fi(z) satisfy the stochastic differential equation (SDE):
Fo(z) =1, dF(z) = Fy(z)(z — b(n), CdBy), Vz €R™

Intuitively, given b(1) = [, 1 (dz) is the expectation of vy, Fy(x) adjusts the
measure v based on the deviation of = from the center of mass b(1).

Using the definition of v;, we have:

/n dv, = / Fy(z) v(dx).

From the SDE for F(z):
dFy(z) = Fy(x){x — b(1y), CydBy).

Integrating over R"™ and using the definition of b(1;):
/ AF, () (d) = / Fi(x)(z — b(w), Cud B)v(dz).
Since [g,(x — b(1)) vi(dx) = 0 by the definition of b(1;), we conclude:

/ dl/t = 0.

Applying It6’s formula to Fy(x), we have:
1
dlog Fy(x) = (x — b(1y), CrdBy) — §HC’t(x — b(wy))|)?dt.

13



Exponentiating, the density function F;(x) becomes:

i) = oo [[ta =0, = § [0 - ).

This expression ensures that Fy(z) is non-negative. Thus, v, satisfies the first
property of a localization process (being a probability measure Vt).

Explicit Form of v,
We do not prove it here but one can show that for all t > 0, the measure v, takes
the explicit form:

dl/t

() = exp (Zt - %@x, ) + (Y, x>> :

where:

- Et = fot Cfds,

-y = [, (CsdBy + C2b(vy)ds),

- Z; is a normalizing constant ensuring that v; is a probability measure.

This explicit form is useful for proving concentration inequalities.

As regards applications, the stochastic localization process has proven highly
useful in studying log-concave measures in the continuous setting, and discrete dis-
tributions, including those over {—1,1}".

It has been employed to derive concentration inequalities in works such as [Che21}

Eld13)].

5 Approximate conservation of variance for linear-
tilt localizations and spectral independence

In this section, we present a powerful tool for proving approximate variance conser-
vation bounds for linear-tilt localization schemes. Note this derivation recovers the
main theorem in the spectral independence framework of |[ALG20|, without using
the theory of high-dimensional expanders.

Let © C R", and let (1), be a localization process on €2 whose evolution is given
by the equation:

v (z) = v(x) (1 + (x — b(wy), Z,)), Vx e, (1)

where Z; is a random vector satisfying E[Z; | 14] = 0.

We start by calculating the variance decay of a test function along this process.

14



Proposition 5.1. Given a test function ¢ : Q0 — R, it holds that:
E[Var,,,,[¢] | vi] — Var,,[¢] = — (v, Crvy), (2)

where

v = /Q(x —b(w))o(z)v(dx), Cp:= Cov(Z; | ).

Proof. Take ¢ : 2 — R. We have:
2
([ otomntan) ]
Q

</Q (1+ (x—=b(n),Z)) (p(aj)l/t(dg;))Q | ut]

( /Q (x b (), Z) go(x)yt(dx))g | Vt]

= Vo = Var | ( [ (0= b ) plohm(a) 2.) | ]

where we first use the fact that 1, is a martingale and then that E[Z; | v;] = 0.
Using the definitions of v; and C}, the right-hand side simplifies to:

Var,, [¢] — (v, Cyvy).

B [Vatulol [ =B | [ ooiven(d) | u] - B

=E, [¢’] - E

= EVt [@2] - ]E'Vt [¢]2 —E

O

To establish an approximate variance conservation bound, we need an upper
bound on the term (v;, Cyvy). By Cauchy-Schwarz, we have:
2

<Ut> CtUt> =

/Q M2 — b)) (@) (dz)

< sup ( /Q (CHP (x — b(ut>>,0>2vt(dw)> Var,,[¢]

l6]|=1
= |G} Cov(1)C}? || op Var,, [¢].
Combining this with Equation 1) we have:
E[ Var,,,[6] | ] = Var, 9] (1 - G}/ Cov ()Gl op ) (3)

This is where the covariance structure plays a role in variance conservation.

5.1 Application to Coordinate-by-Coordinate Localization

Consider the coordinate-by-coordinate localization scheme. Using the definition of
b(14), it holds that:

Il 1+b@), 1 1-b),
(14Db(),)° 2 (1=b(w),)* 2

1 -1
“ b ()

(n—1t)Cov [Z | Vt]z‘,z‘ -

15



using the fact that

/a:f v(dx) = 1.
Q

If we denote D; the diagonal matrix with diagonal entries match those of Cov(v;),
we find:

1 _ _
|G Cov(u) Gy llop = — 1D Cov (1) D op:
Define the correlation matrix:
Cor(v) := diag(Cov(v)) "2 Cov(v) diag(Cov(r)) /2,

where diag(-) is the diagonal matrix obtained by setting all the off-diagonal en-
tries to 0.

Consider also the influence matrix ¥(v), defined as:
U(v)ij = Exan[Xi | Xj = 1] = Exw [Xi | Xj = —1],
U(v) and Cor(v) are related by the following inequality:
| Cor(v)lop = p(¥(v)) < [[¥(¥)llop-

Which, using , allows to finally conclude:

B[ Vanu[o] ] 2 Var o] (1 - 200 )

n—t

Let u € {—1,0,1}". The u-pinning of a measure v, denoted R,v, is defined as
the restriction of v to the sub-cube S, where

Sy =z e{-1,1}" | xu; > 0,Vi € [n]}.

Note that under coordinate-by-coordinate localization, v; can be written as R,v
for some u = u(t). The condition that [|V(R,4)|lop is uniformly bounded in w is
referred to as spectral independence.

Substituting this into Equation yields the main result of the spectral inde-
pendence framework in [ALG20]:

Theorem 5.1. (A reformulation of [ALG20], Theorem 1.3) Let v be a measure on
{—1,1}" such that for all u € {—1,0,1}",

p(V(Ryv)) < nluly.
Then the spectral gap of the k-Glauber dynamics on v is at least

n—k—1 0
11 (1 -— Z) .

1
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Remark. On the differences between the above theorem and [ALG20], Theorem
1.3: in J[ALG20], 7; is taken to be the operator norm of the matrix ¥(R;v) — I,
rather than W(v). Specifically, their result shows that the spectral gap is bounded
from below by the expression

n—k—1 -
1 H i
n 4 n—1t—1
=0

(2

where 7; = n; — 1. This extra factor of % accounts for the replacement of 7; with
ni=mn — 1.

In their proof, Eldan and Chen bypassed the need for concepts like high-dimensional
expanders or the up-down walk. The inequalities involving different levels of the up-
down walk were replaced with an application of the Cauchy-Schwarz inequality.

6 Applications of localization schemes: Glauber
dynamics for Ising models

We begin by presenting a general theorem that provides a sufficient condition for
MLSI (Modified Log-Sobolev Inequality). This corresponds in a sense to a general-
isation of the spectral gap property, using entropy rather than variances, and can
lead to optimal bounds for mixing times. The idea behind the proofs are similar to
the case of the spectral gap.

In the case of a Markov chain associated to a localisation scheme, the MLSI
coefficient ppg(P) can be shown to satisfy:

E [Ent,, [¢]]
prs(P)z I —p ool

(2)

Again, providing a lower bound for pr¢(P) yields an upper bound for the mixing
time of the associated Markov chain.

This theorem also recovers two important results as special cases. The first
result, shown in [EKZ21; Ana+21|, establishes the mixing time for Ising models
whose interaction matrix has a bounded operator norm. This result is particularly
relevant for the Sherrington-Kirkpatrick model at high temperatures. The second
result applies to Ising models in the uniqueness regime and improves upon the main
theorem of [Che+21]. Both of these results rely on the following theorem.

Theorem 6.1. Let v be a probability measure on {—1,1}", and let J be a positive-
definite n x n matriz. For any 0 < A < 1 and any v € R", define the probability
measure [ty by

Ao

7 () x exp (=X (z, Jx) + (v, x)),
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where (-, -) denotes the standard inner product. We assume the following conditions:
1. For some function « : [0,1] — RT,

| Cov(pir)llop < a(N), VA€ [0,1],v € R™
2. For some constant € > 0,

pLS(PGD(/'LI,UZ)) Z €, \ORS ]Rna

where Pgp(-) denotes the transition kernel of the Glauber dynamics. Then, the
following inequality holds for the measure v:

pis(Pant) = cexp (=21 or | o) »).

This theorem is especially useful for measures with quadratic potentials, such as
Ising models. For an n xn matrix J and a vector v € R", consider the Ising measure
v, defined by

vio({z}) ocexp ((z, Jz) + (z,0))

where v denotes the external field. If we apply the theorem above to the measure
v = vj,, we observe that the measure p;, defined above is simply a product mea-
sure. This means that the condition on prg is satisfied with ¢ = % Therefore, the
remaining task is to verify the condition on ||Cov(py,)||op, which ensures that the
operator norm of the covariance is bounded in the way specified.

Proof. To prove this theorem, we consider the localization process (1), correspond-
ing to the measure v, which is obtained via stochastic localization. In particular,
we choose Cy = (2J)Y2 up to time t = 1. We then consider the transition kernel
Pep(v1), which is the random transition kernel associated with the measure v, via
the Glauber dynamics. The goal is to apply Theorem 47 in the original paper to
obtain a lower bound on prs(Pgp(v)).

v; has the form

vi() oc exp (—t(a, Jx) + {ye, 2)) v(a),

for some stochastic process y,. This shows that 14 is of the form p ,,, and in partic-
ular, v; = 1 ,,. By hypothesis pLs(Pap(v1)) > e, satisfying the second condition of
Theorem 47.

Also by hypothesis, we know that the operator norm of the covariance satisfies

|Cov(vy)|lop < a(t), Vte0,1].

Using Lemma 40 in the original paper with the choice A = a(t)I, and C = (2J)/2,
we conclude that v, is a-entropically stable with respect to the potential function
Y@, y) = 51202 (@ - y)|?, with a = 2[|/]|opalt).

Now, applying Proposition 39 in the original paper, we obtain the entropy con-
servation inequality

E[Ent,, [f]] > e~2I/llor Jy ety dt Ent, [f].
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This shows that condition 1 of Theorem 47 is satisfied with a = e~2l7llor Jy a(t)dt,
Thus, we conclude that

pLs(P) > eexp (_2||J||OP /Ola(t) dt) :

This completes the proof. O

7 Conclusion

To derive mixing time bounds for Markov chains, which are crucial to make sure
that sampling from a give measure is possible in polynomial time, the authors have
introduced a powerful framework which constructs a Markov chain with the right
stationary measure to sample from. By considering this probabilistic framework,
rather than the Markov chain from which they are derived, one can provide deep
and powerful results.

The authors build on the second author’s framework of localization schemes
[Eld13] to derive cold start mixing time guarantees for Markov chains in a simple
probabilistic framework that completely bypasses the need for high-dimensional ex-
panders.

Stochastic localisation is a powerful framework that has enabled the research
community not only to derive simpler proofs for existing mixing time results, but
also provide novel results.

The framework is sufficiently broad to encompass a broad range of local dynam-
ics and prove mixing time bounds. Applications are numerous and include Glauber
dynamics (e.g. for the Ising model) or sampling from strongly-log concave measures.

It is still an active branch of research. While the localization schemes are broad
and theoretically elegant, their practical implementation for specific Markov chains
(especially in high-dimensional settings) remains less clear. Concrete algorithms
derived from these methods may involve significant computational overhead. This
could be an interesting future line of research.

The paper provides theoretical results but lacks an empirical evaluation of how
these techniques perform on real-world problems. This is particularly relevant for
applications like sampling from Ising models or log-concave measures, where com-
putational comparisons with other methods could be insightful.
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