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1 Introduction and Motivations

In this brief note, we present a few results from Roman Vershynin, from his book
High Dimensional Probability (2018). Notably, we focus on random vector analysis
building on linear algebra, concentration results for random matrices and the con-
cept of ϵ-net arguments, in relation to solving a community detection problem in a
random Erdös-Rényi graph.

1.1 Context and Model

The context is as follows: a graph containing n vertices is split in two communities,
each of size n/2 (we thus take n even). Vertices from the same community connect
independently with probability p, p ∈ (0, 1), whilst vertices from different commu-
nities connect with probability q, q ∈ (0, 1). Let p be strictly greater than q. This
setup is called the Stochastic Block Model. A visual representation of a graph G
following the Stochastic Block Model is provided below.

Figure 1: An illustration of a random graph G with parameters n = 200, p =
1/20, q = 1/200. From High Dimensional Probability (2018), page 94.

The first step in progressing through the community detection problem is to
identify the graph G with its adjacency matrix A, which fully characterises it. Be-
low is provided the definition used by the author.
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1.2 Introduction of Random Matrices

Definition 1.1. (Adjacency matrix) The adjacency matrix of a graph G with n
vertices is the n×n real symmetric matrix, whose entries Aij are equal to 1 if vertex
i and j are connected, and equal to 0 otherwise.

A, as the adjacency matrix of a given graph G, is indeed the matrix of a given
realization of the model. One might wonder what can be said about E(A). It is thus
useful to split the adjancy matrix A between an ”expected” part, which depends
solely on the Bernouilli parameters p and q, and a residual part R, or noise.

Definition 1.2. (Expected adjacency matrix) The expected adjacency matrix of a
graphG with n vertices, following the Stochastic Block Model with two communities,
is the n×n real symmetric matrix, whose entries Dij are equal to p if vertex i and j
connect with probability p, and equal to q if vertex i and j connect with probability
q.

Remark: we can assume here, to simplify computations that follow, and con-
sidering it does not alter the community detection problem in itself, that vertex i
connects to itself with probability p. This will avoid the introduction of identity
matrices in the computations.

Now that these definitions have been introduced, we pose R := A − D, which
provides us with an expectation and noise decomposition, as mentioned above:
A = D +R.

1.3 Expected Adjacency Matrix

In the case where n = 4, the expected adjacency matrix of a graph G following the
Stochastic Block Model looks as follows:

D =


p p q q
p p q q
q q p p
q q p p



The eigenvalues and eigenvectors of D will allow us to progress in our problem.
In the general case, we observe that:

rank(D) = 2, λ1 =
p+ q

2
n λ2 =

p− q

2
n

where λ1 and λ2 denote eigenvalues. As regards eigenvectors, we have:
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u1 =



1
...
1
1
...
1


u2 =



1
...
1
−1
...
−1



Let us note that ∥u1∥2 = ∥u2∥2 =
√
n.

We observe the eigenvector u2 associated with λ2 fully characterises the commu-
nities of the graph, hence provides a solution to the community detection problem.

However, we know neither u2 nor the expected adjacency matrix D. We would
want to use u2(A), which can be computed explicitly as we have the information
about matrix A, as a proxy for u2(D), however this requires the introduction of
results on perturbation theory to ensure that the perturbation does not alter the
problem too much. It would be useful to derive an upper bound for ∥u2(D)−u2(A)∥.

2 Perturbation Theory and Random Eigenvector

Bound

2.1 Perturbation Theory and Context

Perturbation theory serves as a useful tool in understanding how small changes in
a system or mathematical object can affect its properties. In our case, we are inter-
ested in how perturbations to the expected adjacency matrix D affect its eigenvector
structure. A key result is the Davis-Kahan theorem.

2.2 Davis-Kahan Theorem

The Davis-Kahan Theorem offers a crucial result which will, in our case, ensure
the stability of random eigenvectors after perturbation. It postulates that for sym-
metric matrices S and T with identical dimensions, if a given eigenvalue of S is
well-separated from the rest of the spectrum, the sine of the angle between the
eigenvectors of S and T corresponding to the i-the largest eigenvalue is bounded. It
is provided below, from Vershynin’s High Dimensional Probability :

Theorem 2.1. (Davis-Kahan Theorem)
Let S and T be symmetric matrices with the same dimensions. Fix i and assume
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that the i-th largest eigenvalue of S is well separated from the rest of the spectrum:

min
j:j ̸=i

|λi(S)− λj(S)| =: δ > 0.

Then the angle between the eigenvectors of S and T corresponding to the i-th largest
eigenvalues (as a number between 0 and π

2
) satisfies

sin∠(vi(S), vi(T )) ≤
2∥S − T∥

δ
,

Remark: The eigenvalue separation hypothesis is critical in this theorem. In-
deed, we want to make sure we are comparing eigenvectors corresponding to the
same eigenvalue, before and after having added the perturbation R.

A corollary for unit eigenvectors reveals that, subject to a sign difference, the
difference between eigenvectors corresponding to the i-th largest eigenvalue of S and
T can be bounded as below:

Corollary 2.1 (Davis-Kahan Corollary). For unit eigenvectors vi(S) and vi(T ):

∃θ ∈ {−1, 1} : ∥vi(S)− θvi(T )∥2 ≤
2
√
2∥S − T∥

δ
.

As we lack direct access to D = E(A) and to u2(D), but only have information
about A = D + R, we will want to apply the Davis-Kahan theorem, with S and T
being D and A in our case, respectively. This result implies that, after perturbation
of our matrix D, accessing the random eigenvectors of the perturbed matrix A will
make sense, since it will be close enough to the original corresponding eigenvector
of D. We would then be able to bound the error by a constant times the operator
norm of A−D.

To move forward, this requires to bound ∥A−D∥ = ∥R∥.

3 Concentration Inequality and ϵ-net Argument

We are thus now left to derive an upper bound for ∥R∥ with high probability.

While the author proves a more general result that holds for a matrix R composed
of subgaussian variables, we rely on the fact that Ri,j = Ai,j − E[Ai,j] is a centred
symmetric matrix with independent Bernoulli variables on the upper triangular half
of the matrix, including the diagonal. We use the following characterisation of the
spectral norm and one of Hoeffding’s inequalities:

Proposition 3.1. Let R an n×n real-valued matrix. Denote Sn−1 the unit Euclidean
sphere in Rn. Then:

∥R∥ = supx,y∈Sn−1⟨Rx, y⟩
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Theorem 3.1. (Hoeffding) Let X1, . . . , XN be independent random variables. As-
sume that Xi ∈ [mi,Mi] for every i. Then, for any t > 0, we have

P

(
N∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.

As stated above, the aim of this section is to find an upper bound for P [supx,y∈Sn−1⟨Rx, y⟩ ≥
t],∀t > 0. We proceed in three steps.

• Step 1 : Fix a direction x, y ∈ Rn and find an upper bound for P ⟨Rx, y⟩ ≥
t],∀t > 0. We use Hoeffding’s inequality to derive such a bound.

• Step 2 : Find a subsetN ⊂ Sn−1 of finite cardinal such that supx,y∈Sn−1⟨Rx, y⟩ ≤
Cϵmaxx,y∈N ⟨Rx, y⟩, for an arbitrarily-small ϵ and Cϵ ≈ 1.

• Step 3 : Derive the following: ∀t > 0, P [supx,y∈Sn−1⟨Rx, y⟩ ≥ t] ≤ P [Cϵmaxx,y∈N ⟨Rx, y⟩ ≥
t] and use a union bound to derive:

∀t > 0, P

[
sup

x,y∈Sn−1

⟨Rx, y⟩ ≥ t

]
≤ P

[
Cϵ max

x,y∈N
⟨Rx, y⟩ ≥ t

]

= P

[ ⋃
x,y∈N

⟨Rx, y⟩ ≥ t

]

≤ Σx,y∈NP

[
⟨Rx, y⟩ ≥ t

Cϵ

]
≤ |N | max

x,y∈N
P

[
⟨Rx, y⟩ ≥ t

Cϵ

]
≤ |N | sup

x,y∈Sn−1

P

[
⟨Rx, y⟩ ≥ t

Cϵ

]
We can then bound this quantity using the upper bound found in step 1. We also
hope to bound the cardinal of N by a known quantity.

3.1 Step 1: Getting a Bound for Each Direction x, y

Let x, y ∈ Rn. We have: ∀t > 0,

P [⟨Rx, y⟩ ≥ t] = P

( ∑
1≤i≤j≤n

Ri,j
(xiyj + xjyi)

1 + 1i=j

≥ t

)

Since, Ri,j
(xiyj+xjyi)

1+1i=j
∈ [± |xiyj |+|xjyi|

1i=j
] and are independent random variables for 1 ≤

i ≤ j ≤ n, we can now apply Hoeffding’s inequality on a sum of independent
bounded functions, that are in addition centred:
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P [⟨Rx, y⟩ ≥ t] ≤ exp

− 2t2

4
∑

1≤i≤j≤n

(
|xiyj |+|xjyi|

1+1i=j

)2


We have:

∑
1≤i≤j≤n

(
|xiyj|+ |xjyi|

1 + 1i=j

)2

=
N∑
i=1

|xiyi|2 +
∑

1≤i<j≤n

(|xiyj|+ |xjyi|)2

≤
N∑
i=1

|xiyi|2 + 2
∑

1≤i<j≤n

(|xiyj|2 + |xjyi|2)

=
∑

1≤i,j≤n

|xiyj|2 +
∑

1≤i<j≤n

|xiyj|2

≤ 2
∑

1≤i,j≤n

|xiyj|2

= 2, since x, y ∈ Sn−1

Thus:

P [⟨Rx, y⟩ ≥ t] ≤ exp

(
−t2

4

)
,∀t > 0,∀x, y ∈ Sn−1

We have now derived an upper bound in one arbitrary direction x, y ∈ Sn−1, and
this upper bound does not depend on the direction x, y.

3.2 Step 2: Introducing ϵ-net Arguments

This step includes several preliminary definitions and properties, that will allow us
to find a suitable subset N of Sn−1, of finite cardinal, such that a similar property
to the above-mentioned approximation of supx,y∈Sn−1⟨Rx, y⟩.

We will position ourselves in a metric space (K, d).

Definition 3.1. (ϵ-net and ϵ-separated subsets)

• A subset N ⊆ K is called an ϵ-net of K if every point in K is within distance
ϵ of some point of N , i.e.,

∀x ∈ K, ∃x0 ∈ N : d(x, x0) ≤ ϵ.

Equivalently, N is an ϵ-net of K if and only if K can be covered by balls with
centers in N and radii ϵ.

• A subset N of K is ϵ-separated if d(x, y) > ϵ for all distinct points x, y ∈ N
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Definition 3.2. (Covering and Packing Numbers)

• The smallest possible cardinality of an ϵ-net of K is called the covering number
ofK and is denotedN(K, d, ϵ). Equivalently, N(K, d, ϵ) is the smallest number
of closed balls with centers in K and radii ϵ whose union covers K.

• The largest possible cardinality of an ϵ-separated subset of a given set K is
called the packing number of K and is denoted P (K, d, ϵ). In a normed space,
we have the equivalent definition: it is the largest number of closed disjoint
balls with centers in K and radii ϵ

2
.

Figure 2: Example of ϵ-net and ϵ-separated subset of a compact K. From High
Dimensional Probability (2018), page 82.

On the left-side, one can see how a compact set can be approximated by a finite
number of points forming an ϵ-net of the set. In fact, one important properties of
ϵ-nets is that the covering number, i.e. the smallest cardinality of such a subset, is
finite if and only if the set K is precompact.

The use of the covering and packing numbers is important in the application of
our problem.

Indeed, in a Euclidean space, they have properties that relate them to the volume
of a set and of the Euclidean closed balls. We establish in this context a partial
equivalence between the volume of an ϵ-net and the volume of the whole set.

Lemma 3.2 (Equivalence of covering and packing numbers). For any normed set
K and any ϵ > 0, we have

P (K, d, 2ϵ) ≤ N(K, d, ϵ) ≤ P (K, d, ϵ).

Proof: The upper bound follows from the fact a maximal ϵ-separated subset N
is necessarily an ϵ-net, since adding any point to N would make it lose its separation
property, thus implying that points in K are at a distance of at least ϵ to a point in
N .

For the lower bound, we use the characterisation of the packing number of P , an
arbitrary 2ϵ-separated subset of K in terms of disjoint balls of radii ϵ. We choose
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N an ϵ-net of minimal cardinality (i.e equal to the covering number of K for ϵ). By
definition of a net, each point of P is contained in a closed ball of center in N , and
each ball cannot contain more than one point of P , since P is 2ϵ-separated, and the
triangle inequality applies in a metric space. Therefore |P | ≤ |N |, therefore we have
the result.

This lemma, relating the covering and packing numbers, allows to establish a
powerful result in the context of our problem, that is the partial equivalence between
covering numbers and volume in an Euclidean space.

Proposition 3.3 (Covering numbers and volume). Let K be a subset of Rn and
ϵ > 0. Then

|K|
|ϵBn

2 |
≤ N(K, ϵ) ≤ P (K, ϵ) ≤ |(K + (ϵ/2)Bn

2 )|
|(ϵ/2)Bn

2 |
.

Here | · | denotes the volume in Rn, Bn
2 denotes the unit Euclidean ball in Rn, so

ϵBn
2 is a Euclidean ball with radius ϵ.

Proof: We will not prove the result extensively as it is already detailed in Ver-
shynin’s book.

Let us simply remark that the lower bound can be explained as: the volume of
set K, with covering number N(K, ϵ) is upper-bounded by the volume of N(K, ϵ)
closed balls of radius ϵ.

The upper bound crucially relies on the previous lemma. Indeed, in order to
prove that the volume of a slightly extended set of K is larger than the volume of
N(K, ϵ) closed balls of radius ϵ

2
, one sufficiently upper-bounds the packing number

of K, which we know from the lemma to be larger than the covering number. And,
since the space is normed, one uses the characterisation of the packing number
in terms of the maximum number of disjoint balls of radii ϵ

2
with centers in K.

This naturally allows us to upper bound the covering number. Both the lower and
upper-bounds of N(K, ϵ) are relatively easy to compute, which will help us derive
an easily-usable upper-bound. As an immediate Corollary, we have:

Corollary 3.4 (Covering numbers of the Euclidean ball). The covering numbers of
the unit Euclidean ball Bn

2 satisfy the following for any ϵ > 0:(
1

ϵ

)n

≤ N(Bn
2 , ϵ) ≤

(
2

ϵ
+ 1

)n

.

The same upper bound is true for the unit Euclidean sphere Sn−1.

Proof: The proof is immediate from the previous proposition.

In particular, if we take ϵ = 1
4
, we have:

N(Sn−1,
1

4
) ≤ 9n
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The final justification for introducing these objects in the context of our problem
is the following proposition:

Proposition 3.5. (Partial equivalence of the spectral norm and sup over an ϵ-net)
∀ϵ > 0, for any ϵ-net N of Sn−1, for any nxn matrix R,

supx,y∈N ⟨Rx, y⟩ ≤ supx,y∈Sn−1⟨Rx, y⟩ ≤ 1

1− 2ϵ
supx,y∈N ⟨Rx, y⟩

Proof: The lower bound is trivial since N is a subset of Sn−1 by definition.

For the upper bound: take x, y ∈ Sn−1 and ϵ > 0 and N an ϵ-net of Sn−1. There
exists x0, y0 ∈ N , such that ∥x− x0∥ ≤ ϵ and ∥y − y0∥ ≤ ϵ.

⟨Rx, y⟩ = ⟨R(x− x0), y⟩+ ⟨Rx0, y⟩
≤ ∥R(x− x0)∥∥y∥+ ⟨Rx0, y⟩, by Cauchy-Schwarz

≤ ϵ∥R∥+ ⟨Rx0, y0⟩+ ⟨Rx0, y − y0⟩
≤ ϵ∥R∥+ ⟨Rx0, y0⟩+ ∥Rx0∥∥y − y0∥
≤ ⟨Rx0, y0⟩+ 2ϵ∥R∥

So ∀x, y ∈ Sn−1, ∃x0, y0 ∈ N , such that ⟨Rx, y⟩ − 2ϵ∥R∥ ≤ ⟨Rx0, y0⟩

Thus, taking the sup, we have: supx,y∈Sn−1⟨Rx, y⟩ ≤ 1
1−2ϵ

supx,y∈N ⟨Rx, y⟩. This
completes the proof.

3.3 Step 3: Using an ϵ-net Argument and the Union Bound

We have shown in step 2, that if we take an ϵ-net N of Sn−1 with minimum cardi-
nality (in particular, finite cardinality), we can bound its cardinal, using ϵ = 1

4
, by

9n. Thus, since we have ∥R∥ ≤ 1
1−2ϵ

maxx,y∈N ⟨Rx, y⟩, we can derive, using the same
logic as previously detailed in the sketching of step 3: ∀t > 0,∀ϵ > 0,

P [∥R∥ ≥ t] ≤ P

[
1

1− 2ϵ
max
x,y∈N

⟨Rx, y⟩ ≥ t

]
≤ |N | sup

x,y∈Sn−1

P [⟨Rx, y⟩ ≥ (1− 2ϵ)t]

≤ |N | exp
(
−t2(1− 2ϵ)2

4

)
For ϵ = 1

4
, we get ∀t > 0:

P [∥R∥ ≥ t] ≤ 9n exp

(
−t2

16

)
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Take u = C(
√
n+ t), with C an sufficiently large absolute constant, we get that

∥R∥ ≤ C(
√
n+ t) , with probability 1− e−t2 , ∀t > 0.

Taking t at the right scale, i.e.
√
n, we have ∥R∥ ≤ C

√
n , with probability

1− e−n, with C an absolute constant:

Theorem 3.2. (Upper-bound on the spectral norm of R)

∥R∥ ≤ C
√
n

with probability 1− e−n, with C an absolute constant.

Remark: We wanted to bound the probability of a sup over an infinite non-
countable set, we have introduced simple approximations of the set, in this case ϵ-
nets and ϵ-separated subsets, to actually consider the max over a finite cardinal set,
whose cardinal we are able to bound. This has enabled us to bound the probability
of a sup, by the finite sum of the probabilities in all directions, multiplied by the
upper bound of the cardinal of the simple approximated set. We then obtain a
sup of the probabilities in all directions of the set, which we rather easily bounded
in step 1 using Hoeffding’s lemma. This is the key message that we would like to
emphasise from this proof and reasoning.

4 Deriving an Upper Bound on the Number of

Errors in the Community Detection Problem

In tackling the issue of detecting communities within a network, tools to conclude
and derive a result are now available. We use the Davis-Kahan corollary, setting
S = D and T = A = D + R, specifically focusing on the second-largest eigenvalue,
as u2 is the eigenvector of focus (considering it contains information about the com-
munity structure).

It is key to ensure that λ2 is separated from D’s spectrum, i.e. from 0 and λ1.
This separation, denoted as δ, is given by:

δ = min(λ2 − 0, λ1 − λ2) = min

(
p− q

2
, q

)
n =: µn.

Thus, with the established limit on R = A −D and invoking the Davis-Kahan
corollary, we’re able to bound ∥u2(D)−θu2(A)∥. We first write the following bound
for unit eigenvectors:

There exists a scalar θ ∈ {−1, 1} such that

∥v2(D)− θv2(A)∥2 ≤
C
√
n

µn
=

C

µ
√
n

with probability of at least 1− e−n.
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As ∥u2(D)∥ =
√
n, multiplying the previous bound by

√
n results in:

∥u2(D)− θu2(A)∥2 ≤
C

µ
.

And finally by squaring the previous bound:

n∑
j=1

|u2(D)j − θu2(A)j|2 ≤
C2

µ2
,

with u2(D)j strictly being ±1∀j.

This allows us to conclude: a discord in signs between θv2(A)j and v2(D)j adds
at least 1 to the sum. Therefore, the count of disagreeing signs is upper-bounded by

C2

µ2
.

Which, in the community detection problem, means that the eigenvector u2(A)
can serve as a good proxy for u2(D). The sign patterns of u2(A) approximately
delineates the two communities. This approach, known as spectral clustering, can
be summarized in the following theorem:

Theorem 4.1. (Spectral Clustering under the Stochastic Block Model)
Given a graph G ∼ G(n, p, q) with p > q and min(q, p−q

2
= µ > 0, the spectral

clustering method, with a probability exceeding 1−e−n, accurately discerns G’s com-
munities save for a margin of C2/µ2 misclassified vertices.

5 Conclusion

In summary, the analysis of community detection under the Stochastic Block Model
highlights the effectiveness of spectral clustering. By controlling the perturbation
matrix R through spectral norm bounds, one obtains probabilistic guarantees for
accurately recovering the community structure.

A central aspect of Vershynin’s approach is the use of ε-nets to bound operator
norms, reducing a supremum over an uncountable set to a finite approximation.

These results emphasize the interplay between linear algebra, random matrix
theory, and probability in addressing fundamental questions in network analysis.
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